
A b s t r a c t. This paper describes the development of an

embedded real-time system devoted to microclimate control in

a complex greenhouse. The control system is capable of managing

multiple, independent poly-tunnel units (PTUs). Both the internal

temperature and humidity of PTUs as well as the external

temperature, rainfall and wind conditions are monitored and

regulate decisions of the control system. The control system is di-

rected by parameters entered at configuration time through a user-

friendly graphical interface. The realization depends on the use of

Java technologies and on a specific methodology suited to the

development of real-time systems. The approach is based on

hierarchical state machines extended with timing constraints, and a

supporting toolbox which enables graphical modelling, automatic

code generation, simulation and real-time execution of a system.

The paper discusses design and implementation aspects of the

control system and reports information collected from real

operation.

K e y w o r d s: greenhouse climate control, embedded

real-time systems, statecharts, integrated development, Java

INTRODUCTION

Greenhouse climate control (Critten and Bailey, 2002)

is a well-known challenging problem. It affects both the

quality of produced horticultures and the economic

expectations of the growers. Several models have been

proposed in the literature, eg (Albright et al., 2001; Cunha,

2003; Caponetto et al., 2000; Miranda et al., 2006) which

can predict the values of environment variables (air

temperature, relative humidity, CO2, light radiation, etc.)

with the help of AI based techniques (genetic algorithms,

artificial neural networks, fuzzy logic and so forth). These

models are intrinsically difficult due to the complex

interrelations which exist between greenhouse internal and

external environment variables. For instance, model

time-variant parameters are often required which make

value prediction imprecise and with a limited time horizon

validity. In addition, models can be highly demanding from

the computational point of view, which makes them not

always adequate for use in real-time operation.

In the work described in this paper a purely software-

based approach is experimented. The approach is event-

driven, time-driven and domain expert-driven. The beha-

viour of the control system mainly consists in the periodic

reading of data from sensors and in the elaboration of

corresponding response actions to be executed on actuators.

Responses are sensitive to the configuration data entered by

the greenhouse domain expert at system start-up time.

The development technology is centred on Java and in

particular on the Hierarchical Communicating Real-Time

State Machines modelling language and the supporting

toolbox VIOLIN (Furfaro et al., 2006). VIOLIN permits

visual modelling, simulation with RTL-like assertions, and

Java code generation of an H-CRSM system. The generated

code of a final system is automatically weaved with a custom

runtime executive which supports cooperative concurrency

and favours time predictability.

The achieved embedded real-time system is actually in

charge of climate control in a complex greenhouse con-

sisting of multiple and independent poly-tunnel units

(PTUs), used for possibly different horticultures at a given

time. The system is in real use and has significantly

improved the management of the before manually operated

physical system. Two basic goals were pursued: 1) pro-

tecting the greenhouse structure from damage by reacting in

Int. Agrophysics, 2007, 21, 17-27

Embedded real-time system for climate control in a complex greenhouse**

A. Candido, F. Cicirelli, A. Furfaro, and L. Nigro*

Software Engineering Laboratory, Department of Electronics Informatics and Systems Science, University of Calabria,

87036 Rende, Italy

Received September 25, 2006; accepted December 1, 2006

© 2007 Institute of Agrophysics, Polish Academy of Sciences

*Corresponding author’s e-mail: l.nigro@unical.it

**This work was partially supported by Progetto di Ricerca

M.ENTE: Management of Integrated Enterprise, PON n° 12970-

Mis.1.3 – M.I.U.R, Settore Agro-Industria Tema 2.

IIINNNTTTEEERRRNNNAAATTTIIIOOONNNAAALLL

AAAgggrrroooppphhhyyysssiiicccsss

wwwwwwwww...iiipppaaannn...llluuubbbllliiinnn...ppplll///iiinnnttt---aaagggrrroooppphhhyyysssiiicccsss

due time to external wind events and rainfalls, which

obviously can also occur in combination; 2) maintaining the

air temperature and relative humidity in the various PTUs

within required ranges of values through PTU windows

opening/closing and possibly by activating the local heater

or the cooling sub-system.

The paper describes design and implementation aspects

of the greenhouse climate control system together with its

supporting H-CRSM methodology. The real operation of

the system is then demonstrated through execution scenarios

based on sampled history of logged events and reactions.

GREENHOUSE SYSTEM

The greenhouse physical system, located in the southern

of Italy, occupies a surface of 12000 m
2
, with 28 tunnels

partitioned into 6 poly-tunnel units (PTUs). Figure 1 shows

a typical PTU.

The greenhouse produces both flowers eg chrysan-

themum and horticultures eg string bean. Tunnels are

covered by polyethylene sheets. PTUs are units for data

sampling and control. They are provided with sensors for

capturing the internal air temperature and relative humidity.

Tunnels in a PTU have roof windows (Fig. 2a) extending

over the whole length of the tunnel, which can be opened/

closed through asynchronous three phase motors (Fig. 2b).

Each PTU is also equipped with front/rear and lateral

windows but at current time only the roof windows are under

the automatic control of the software system. Depending on

window placement, a tunnel can have one (near the highest

position of the cover) or two (in low and opposite positions

of the cover) windows.

The greenhouse is powered with a total wattage of

25KW. Particular attention was devoted to provisions

capable of reducing the electrical power requirements. For

instance, some PTUs can have their roof windows partitio-

ned into two groups of alternating windows. When the need

arises, windows of the two groups are then operated in an

interleaved way. A similar provision is exploited for actuating

the electrical fans of the PTU cooling system (Fig. 2c, d).

In this case, up to three groups of fans can be established,

with the first group comprising fan motors which are

actuated through an inverter and the remaining group motors

which are on/off actuated. Finally, a PTU can have a heater

(boiler) which can generate warm air during winter cold

conditions.

The whole greenhouse is equipped with a meteoro-

logical box with sensors for reading the external air tempera-

ture, velocity and direction of wind and the presence/

absence of a rain/snow fall. Such data are shared and can

influence the operation of all the PTUs.

DESIGN OF THE CLIMATE CONTROL SYSTEM

The following outlines the design and implementation

of the proposed greenhouse climate control system -CCS-,

along with its supporting methodology. The software

system runs on a single Win2k platform.

Supporting methodology

CCS development is based on the H�CRSM modelling

language (Furfaro et al., 2006) which is an extension with

statecharts (Harel, 1987) of the Communicating Real-Time

State Machines (Shaw, 1992; Raju and Shaw, 1994; Fortino

and Nigro, 2000). H-CRSM represents a software archi-

tecture (Shaw and Garlan, 1996). Machines are the basic

building blocks. They hide a behaviour modelled as a distil-

led statechart where only the or-decomposition of states is

allowed. Machines follow a distributed model of concur-

rency: they share no data and concurrently execute except

when they need to interact. The communication model is

patterned à la CSP ie it is based on synchronous (rendez

vous) unidirectional 1-to-1 channels with typed messages,

linking matching input/output ports. State transitions in a ma-

chine are annotated by a guarded command with a timing

constraint ie a time interval [a,b], 0�a�b, b can be �. When

a=b, the time interval is abbreviated as [a]. Basic commands

are: input (?), output (!), timer ?, or an internal command.

The timing constraint is relative to the instant in time when

the current state was entered and serves to express the

temporal readiness of an enabled ie guard is true command.

Internal commands have a hidden and implicit time

constraint of [0,�], whereas the explicit time interval is

instead a duration interval [d1,d2] meaning that the algo-

rithm of the internal command is expected to require at least

d1 time units and at most d2 time units to complete its

execution. When the duration interval of an internal com-

mand is not specified, it defaults to 0 ie the command is

supposed to consume a negligible time to complete. A timer

command permits to schedule a timeout to occur after a given

amount of time measured from the moment the current time

is elapsed. In particular, a command like timer(v)?[�t]

18 A. CANDIDO et al.

Fig. 1. A screenshot of a polytunnel unit.

implicitly saves in the variable v the system real time

(returned by the function rt()) when the timer expires. All of

this can be exploited, for instance, to achieve a periodic

behaviour.

Time constraints determine, among the enabled

commands in a given machine, which command is eligible

for execution. Conflicts among transitions outgoing current

state of a machine are resolved according to the earliest time

first strategy which forces firing the (or a) command having

earliest occurrence time. The other commands are then

discarded. In the case of multiple candidate events, one is

chosen non-deterministically.

Full life-cycle development of H�CRSM systems is

enabled by the VIOLIN toolbox (Furfaro et al., 2006) which

permits graphical modelling, simulation with RTL-like

assertions (Shaw, 1997; Fortino and Nigro, 2000) for

functional/temporal property checking, and Java code

generation of a system. The code generator weaves the final

system implementation with a library of Java classes

(framework) handling statechart hierarchies and dynamic

evolution, interface classes for accessing the native driver

code of sensors/actuators (Fig. 3) and a custom real-time

executive which ensures cooperative concurrency instead of

EMBEDDED REAL-TIME SYSTEM FOR CLIMATE CONTROL IN A COMPLEX GREENHOUSE 19

Fig. 2. Particular of: a – roof windows, b – a window motor, c – a PTU’s cooling fans, and d – opposite side of PTU’s cooling panels.

a b

dc

Fig. 3. CCS organization based on H�CRSM/VIOLIN.

over-killing concurrency and pre-emption. The runtime

system makes it possible to statically allocate the memory of

all the objects (states, transitions, channels, data messages

and so forth) needed by an implemented system. The pro-

vision avoids interventions of the Java garbage collector.

CCS Architecture

Figure 4 depicts the H-CRSM architecture of CCS

composed of a collection of interconnected statechart

machines. The architecture is closed: particular machines eg

sensor and motor machines explicitly model the external

controlled environment (greenhouse). For instance,

WindVelDirSensor machine reads wind velocity and

direction; RainSensor communicates to the Controller the

presence/absence of a rainfall; IntTempHumSensor machi-

ne samples the internal air temperature and relative humidity

on a per PTU basis, and so forth. The Configurer takes data

entered by the greenhouse manager at the CCS GUI and uses

this information to initialize the various machines. The Con-

figurer is also capable of starting/ stopping the Controller.

Configuration data belong to the following categories:

a) physical boards information ie base address, port bit

assignments for commanding a reading from a sensor or an

actuation to a motor;

b) motor times eg the maximum time (�70 s) required by

a window motor for a full open/close operation starting

respectively from a closed/opened state. Other attributes re-

late to the scanning times (motor scanners in Fig. 4) when

actuating a group of motors of a PTU through interleaving;

c) control information ie the data upon which the control

system bases its operation. The first kind of control

information concerns the indication of the active PTUs ie

those effectively included for monitoring and control. The

second type of control information relates to the specifi-

cation of the optional equipments of PTUs. For example, an

enabled and active PTU can have or not the heater or the

cooling system installed and/or enabled. The third kind of

control information refers to thresholds ie the admissible

ranges of values for the various controlled environmental

variables, eg the internal temperature/humidity of a PTU,

the wind velocity/direction with respect to which a PTU

must react, the times at which, for a PTU, the day starts, the

evening starts, the night starts, and so forth.

The control strategy of CCS was designed to react, in

general, not to instantaneous changes in the environment

variables, but to trend of variation. Toward this, values of

a controlled variable eg wind velocity are buffered in a push-

out queue so as to support trend variation reasoning. The size

of a buffer depends on the reading period of the variable and

on the observation period ie a time parameter entered by

GUI which allows to memorize multiple variable samples.

In addition, a settlement time can be used to separate

consecutive control actions of CCS. Some events, though eg

rain can require an immediate response. The control strategy

is compatible with the temporal dynamics of the greenhouse

system and purposely avoids intermittent window actuation,

with obvious motor consumption problems eg during

circumstances of rapid and irregular wind events.

Figure 5 shows a screenshot of CCS GUI for entering

sensor parameters for the external meteorological box. As

one can see, for each external variable, the reading period

and linearization information necessary for translating

electrical samples in the corresponding measurement units

eg °C for the air temperature can be furnished. At con-

figuration time, a functionality check can be performed by

asking a read operation to a selected sensor. Set-up para-

meters can be verified for correctness and can be saved/

restored to/from a disc file.

The GUI panel in Fig. 6a permits thresholds for a given

PTU to be entered. Both the meaning of low or high wind

velocity is specified, as well as the orientation (against

north) of the greenhouse, useful to sense wind direction. For

the internal temperature, a critical minimum (tcmin), minimum

(tmin), mean (tmean), maximum (tmax), critical maximum

(tcmax) set points can be entered. Also the value (hmax) which

specifies a high internal humidity can be specified. Finally,

the operator can insert the minutes from midnight after

which respectively the day starts, the evening starts or the

night starts for the given PTU.

Panel in Fig. 6b allows one to enter, on a PTU basis, the

response which CCS should actuate on the occurrence of

external events. For example, in the event of a low wind, the

PTU windows directly against wind should be opened at

30% of their maximum opening, whereas the PTU windows

on the opposite side should be opened at 80%. The same

behaviour is specified when the combination low wind/rain

occurs. Figure 6b also shows the open percentage of PTU

windows which should be adopted by CCS at the various

time intervals of the day. The same GUI allows to enter the

motor scanning time and the settlement time.

Figure 7 shows the internal structure of the top state of

the Controller machine. Idle, Normal and EnergyMiss sub

states are macro states ie they admit decomposition.

Remaining states are leaf or elementary states. In the Idle

state the Controller receives configuration parameters and

sets up buffers for supporting trend variation analysis, both

for external and internal sensors. EnergyMiss is reached

when an energy loss event is sensed, in which case, if a pro-

prietary power generator is available, the power generator

can be used by CCS to continue execution or CCS can be

reset and made idle. Dual operations are carried out on the

coming back of external supplied electric energy. In the

Normal state, Controller is capable of engaging commu-

nications with sensor machines in order to update its control

status. Following each sensor interaction, the Controller

resumes its previous behaviour (see the deep-history H*

connector in Fig. 7).

20 A. CANDIDO et al.

F
ig

.
4
.

H
�

C
R

S
M

ar
ch

it
ec

tu
re

o
f

C
C

S
.

EMBEDDED REAL-TIME SYSTEM FOR CLIMATE CONTROL IN A COMPLEX GREENHOUSE21

Control logic

The mission of CCS is to preserve the integrity of the

greenhouse system against wind/rain external events, then

to maintain the internal temperature of PTUs within the

corresponding required interval [tmin..tmax] and the relative

humidity below the associated hmax value. Since tempe-

rature is assumed to be a more critical factor for growing

plants in the greenhouse than humidity, CCS reacts to a high

relative humidity but its ultimate goal is to keep the air

temperature under control.

From time to time the external wind velocity/direction,

rain and temperature conditions are analysed and the

corresponding responses identified, namely the opening

percentage of PTU windows. The required closing/opening

actions, whose exact amount obviously depends on the actual

opening percentage of windows, are compared against those

prescribed by the greenhouse expert for the current time of

day. The minimal request (worst case) is determined also

considering the response requirements arising from the

internal air temperature control. In order to summarize

temperature control, it is useful to observe that two intervals

exist for the relative humidity:

normal=[<hmax], exceptional=[>=hmax].

Normal humidity

In the case the humidity is in the normal range, six

intervals are considered for the internal air temperature:

A=[<tcmin], B=[tcmin..tmin], C=[tmin..tmean], D=[tmean..tmax],

E=[tmax..tcmax], F=[>tcmax]. First the CCS classifies the

temperature in its belonging interval, then its trend of

variation is detected. It is the diminishing/increasing

character of the air temperature which dictates the reaction

of the CCS. In the case the interval is A or B and the PTU has

an installed and enabled heater, the latter is turned on (with

PTU windows totally closed). After two consecutive steps in

which the internal temperature is found in this too cold

condition and also the external temperature is low, an alarm

is raised to the human operator in order to check heater

functionality and/or the behaviour of temperature sensors.

Another alarm is raised in the situation the heater should be

turned on and it is disabled at the moment eg for

maintenance problems. Similar considerations hold for the

cases when the internal air temperature is found belonging to

E or F intervals and the PTU has an installed and enabled

cooling system (whose operation requires the PTU windows

to be kept fully closed, too).

22 A. CANDIDO et al.

Fig. 5. CCS GUI for setting up parameters for the meteorological box sensors.

EMBEDDED REAL-TIME SYSTEM FOR CLIMATE CONTROL IN A COMPLEX GREENHOUSE 23

a

Fig. 6. CCS GUI for: a – entering threshold parameters of a selected PTU, b – entering response parameters of a selected PTU.

b

Exceptional humidity

In this case three intervals for the temperature are

recognized: low=[<tmin], normal = [tmin..tmax], high=[>tmax].

If the internal temperature is low eg during winter nights or

too cold days, and also the external temperature is low,

provided the heater is installed and enabled, it is turned on

with windows totally closed. When the external temperature

is not low, an alarm is sent to the operator to check the

temperature sensors. If the internal temperature and external

temperature are low and the heater turned on, in order to

control the humidity the following procedure is attempted.

The heater is temporarily turned off. Then the PTU windows

are forced to a 10% of opening percentage. The settlement

time is then awaited. After that, if the system detects the

same situation, the heater is turned on again and the

windows fully closed. When the internal temperature is

found not to be low, and the windows are required to be

totally closed, the windows are temporarily forced to a 10%

of opening and the settlement time waited. Then, if the

situation persists, the windows are fully closed again: if it is

true that a high humidity can cause some disease eg fungi to

growing plants, it is also true that a too cold temperature can

destroy the horticulture. Otherwise, if the humidity dimini-

shes, the control behaviour reduces to that of normal humidity.

In the case the temperature is found in the normal range,

nothing has to be done except to verify that the windows are in

a partially opened state. Whenever, after two consecutive

control steps, the situation repeats unchanged, an alarm is sent

to the operator in order to check the relative humidity sensor.

Finally, when the temperature is in the high interval, the

PTU windows must be fully opened. In any case an alarm is signal-

led to the operator asking for a check to the humidity sensor.

OPERATIONAL CONCERNS

The CCS system was tested first in simulation, in the

context of the Violin toolbox, then, incrementally, on the

real physical system. During simulation, virtual devices (for

sensors/actuators) were used and assertions (Raju and Shaw,

1994; Fortino and Nigro, 2000; Furfaro et al., 2006) were

introduced for checking the functional/temporal behaviour

of the system. The actual shape of assertion programming, is

shown below. A simple assertion is reported which checks

that the Controller is always able to receive the latest

sampled data from the WindVelDirSensor machine. The

assertion is triggered when the control engine is up to

dispatch a rendezvous on the WindVDCh channel between

Wind VelDirSensor and the Controller.

when WindVDCh{

if(time(WindVDCh, -2)!= -1)

assert(time(WindVDCh, -1)-time(WindVDCh, -2)

<=readingPeriod);

}//when

The VIOLIN control engine collects on a Timestamped

Event History -TEH - (Shaw, 1997) the occurrence time and

data value of each channel communication. The assertion

24 A. CANDIDO et al.

Fig. 7. Top state of Controller.

EMBEDDED REAL-TIME SYSTEM FOR CLIMATE CONTROL IN A COMPLEX GREENHOUSE 25

Fig. 8. Right/left window opening %: a – wind velocity vs. time, b – rain vs. time, c – vs. time of the day, and d – internal temperature

vs. time of day.

a

b

c

d

first checks that a previous communication on the

WindVDCh really exists on the relevant TEH, then that the

time difference between current and immediately preceding

communication is less than or equal to the sensor reading

period (an input parameter for CCS). The assertion writes

information about the check in a log file. The assertion was

found always verified during the simulation. Other similar

assertions were prepared for the other machines.

Snapshots from real execution

Assertions are normally excluded from the production

build of an H-CRSM system. A special assertion, though,

which simply stores the occurrence (time and value) of all

events and reactions of CCS in a system history log file, was

kept in the real-time operation in order to take snapshots

from the real operation of the system.

Figures 8 depict the climatic behaviour of a particular

PTU on a given day. On the chosen day some interesting

external events (wind vs. rain) are sensed. The operation of

the two window motor groups (RWM – right window mo-

tor, LWM - left window motor) is represented against time

of the day and respectively: wind velocity, rain, opening

thresholds required by times of the day and the internal air

temperature.

In Fig. 8a the day starts for the PTU at about 7:00 a.m.,

when both RWM/LWM are opened for less than 20%, and

ends at 19:00, when RWM/LWM begin to close (they are

fully closed at 21:30). At about 8:00 both the windows are

fully opened (100%). Figure 8 shows that at 10:08, due to

a wind peak, RWM, which is in front of wind, is opened less

than 20%, whereas LWM (on the opposite side with respect

to wind) is opened at 60%. The situation is exactly reversed

at about 11:34. After that, there are moments where both

windows are completely closed eg at 12:22, although this

action is not necessarily implied by wind velocity. As shown

in Fig. 8b these instants effectively correspond to the

presence of rain (rain bit true).

Figure 8c portrays the same information of RWM/

LWM vs. time of day thresholds as entered through the CCS

GUI. As one can see, at 21:00 the PTU switches to night.

Finally, phenomena can be watched from the viewpoint

of variations of the internal air temperature (Fig. 8d). In

reality, the considered PTU registers, on the chosen day,

internal temperature which is always beyond the admitted

maximal value, already at the beginning of the day.

Accordingly, the worst-case climatic conditions command

the operation of the window motors. For instance, the fact

that from the beginning of the day the windows get

completely opened is a direct consequence of the sensed

high internal temperature. However, rain and wind can

temporarily become the most critical events to which the

CCS, for safety, has to react.

CONCLUSIONS

1. The greenhouse Climate Control System (CCS)

described in this paper is characterized by the use of a Java

centred custom and time-sensitive component-based soft-

ware architecture (H-CRSM), and by its character of being

application-expert configurable. The user-friendly graphi-

cal interface permits, for example, to configure the poly-

tunnel units which are to be actively controlled and to enter

threshold information which directs the CCS in the process

of responding to climatic events.

2. Parameters which drive microclimate control are

actually derived through experimental work and rely also on

domain expert knowledge. In alternative, parameter values

could be suggested by using specific models of greenhouse

microclimates as described, for example, in Miranda et al.,

2006; Van Henten, 2003; Lees et al., 2005.

3. CCS realization is cost-effective with respect to the

cost of the controlled greenhouse physical system. Its

practical use does not require computer engineering

competence. Configuration data, which tend naturally to be

reusable, can be saved and restored instead of being

re-entered at each start-up.

4. Current efforts are directed at:

– improving data configuration,

– optimising the control strategy of the CCS,

– completing remote monitoring and control of the CCS

through a smart phone.

5. Future directions which deserve further work are

geared at:

– extending control to lateral and front/rear window motors

in poly-tunnel units,

– enabling CO2 and light radiation control,

– adding the automatic control of a darkening subsystem in

selected poly-tunnel units,

– controlling the irrigation subsystem,

– adapting the system to hydroponics/aeroponics horti-

cultures.

REFERENCES

Albright L.D., Gates R.S., Arvanitis K.G., and DrysdaleA.E.,

2001. Environmental control for plants on earth and in space.

IEEE Control Systems Magazine, October, 28-47.

Caponetto R., Fortuna L., Nunnari G., Occhipinti L., and

Xibilia M.G., 2000. Soft computing for greenhouse climate

control. IEEE Trans. On Fuzzy Systems, 8, 6, December,

753-760.

Critten D.L. and Bailey B.J., 2002. A review of greenhouse

engineering developments during the 1990s. Agric. Forest

Meteor., 112/1, 1-22.

Cunha J.B., 2003. Greenhouse Climate Models: An Overview.

Proc. of EFITA 2003, 823-829.

26 A. CANDIDO et al.

Fortino G. and Nigro L., 2000. A toolset in Java2 for modelling,

prototyping and implementing communicating real-time

state machines. Microprocessors and Microsystems, 23, 3,

573-586.

Furfaro A., Nigro L., and Pupo F., 2006. Modular design of

real-time systems using hierarchical communicating real-

time state machines. Real-Time Systems, 32/1-2, 105-123.

Harel D., 1987. Statecharts: A visual formalism for complex

systems. Sci. Computer Programming, 8, 231-274.

Lees M.J., Taylor J., Chotai A., Young P.C., and Chalabi Z.S.,

2005. Design and implementation of a proportional-integral

plus (PIP) control system for temperature, humidity and

carbon dioxide in a glasshouse. Acta Horticulturae, 406,

115-224.

Miranda R.C., Ventura-Ramos E., Peniche-Vera R.R., and

Herrera-Riuz G., 2006. Fuzzy greenhouse climate control

system based on a field programmable gate array. Bio-

systems Eng., 94, 2, 165-177.

Raju S.C.V. and Shaw A.C., 1994. A prototyping environment

for specifying and checking communicating real- time state

machines. Software-Practice and Experience, 24, 2, 175-195.

Shaw A.C., 1992. Communicating real-time state machines. IEEE

Transactions on Software Eng., 18, 9, 805-816.

Shaw A.C., 1997. Time-stamped event histories: a real-time

programming object. Proc. 22nd IFIP/IFAC Workshop Real

Time Programming (WRTP’97), 97-100.

Shaw M. and Garlan D., 1996. Software Architecture: Perspecti-

ve on an Emerging Discipline. Prentice-Hall, Upper Saddle

River, NJ, USA.

Van Henten E.J., 2003. Sensitivity analysis of an optimal control

problem in greenhouse climate management. Biosystems

Eng., 85, 3, 335-364.

EMBEDDED REAL-TIME SYSTEM FOR CLIMATE CONTROL IN A COMPLEX GREENHOUSE 27

